On the extendability of elliptic surfaces of rank two and higher
نویسندگان
چکیده
— We study threefolds X ⊂ Pr having as hyperplane section a smooth surface with an elliptic fibration. We first give a general theorem about the possible embeddings of such surfaces with Picard number two. More precise results are then proved for Weierstrass fibrations, both of rank two and higher. In particular we prove that a Weierstrass fibration of rank two that is not a K3 surface is not hyperplane section of a locally complete intersection threefold and we give some conditions, for many embeddings of Weierstrass fibrations of any rank, under which every such threefold must be a cone. Résumé. — On étudie les variétés de dimension trois X ⊂ Pr qui ont comme section hyperplane une surface lisse avec une fibration elliptique. On prouve d’abord un théorème général sur les plongements possibles de ces surfaces de nombre de Picard égal à deux. Dans un deuxième temps, on prouve des résultats plus précis pour les fibrations de Weierstrass de rang supérieur ou égal à deux. En particulier, on prouve qu’une fibration de Weierstrass de rang deux qui n’est pas une surface K3 n’est pas une section hyperplane d’une variété de dimension trois localement intersection complète. On donne, de plus, des conditions sous lesquelles, pour beaucoup des plongements de fibrations de Weierstrass de rang quelconque, toute variété de dimension trois comme ci-dessus est un cône.
منابع مشابه
Complete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملOn Silverman's conjecture for a family of elliptic curves
Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملOn the Elliptic Curves of the Form $y^2 = x^3 − pqx$
By the Mordell- Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves, where p and q are distinct primes. We give infinite families of elliptic curves of the form y2=x3-pqx with rank two, three and four, assuming a conjecture of Schinzel ...
متن کامل